Дано уравнение sin(2x)=sin(x).
Раскроем левую часть:
2sin(x)cos(x) = sin(x),
2sin(x)cos(x) - sin(x) = 0,
sin(x)(2cos(x) - 1) = 0,
Каждый из множителей может быть равен нулю:
sin(x) = 0, х =πk, k ∈ Z.
2cos(x) - 1 = 0,
cos(x) = 1/2,
x = 2πk - (π/3), k ∈ Z,
x = 2πk + (π/3), k ∈ Z.
На заданном отрезке |-3;3] имеется всего 3 корня при k = 0:
x₁ = 0,
x₂ = -1,0472,
x₃ = 1,0472.