Сумма острых углов прямоугольного треугольника равна 90°.Т. к. один из острых углов равен 60°, значит, второй угол равен 90° - 60° = 30°.
Против меньшего угла лежит меньшая сторона.
Значит, против угла в 30° лежит меньший катет.
Известно, что катет, лежащий против угла в 30°, равен половине гипотенузы.
Пусть катет равен х см, тогда гипотенуза равна (2х) см.
По условию сумма меньшего катета и гипотенузы равна 42 см. Составим и решим уравнение:
х = 2х = 42
3х = 42
х = 42 : 3
х = 14
Значит, меньший катет равен 14 см, а гипотенуза равна 14 · 2 = 28 (см)
Ответ: 28 см.