решить уравнение cos2x+3sin2x=3
-----------------------------------------------
1*cos2x+3sin2x=3 * * * √(1²+3²) = √(1+9) = √10 * * *
(1/√10 )* cos2x+(3/√10)*sin2x =3/√10 ;
(1/√10 )* cos2x+(3/√10)*sin2x =3/√10 ;
* * *обозначаем cosα= 1/√10 , sinα=3/√10 ⇒ α =arccos(1/√10) * * *
cosα* cos2x+sinα*sin2x =3/√10 ;
cos(2x-α)= 3/√10 '
2x-α = ±arccos(3/√10) +2πn , n∈Z.
2x = α ±arccos(3/√10) +2πn , n∈Z ;
x =(1/2)*( α ±arccos(3/√10) +2πn , n∈Z .
x =(1/2)*( arccos(1/√10) ±arccos(3/√10) +2πn) , n∈Z
ответ : (1/2)*( arccos(1/√10) ±arccos(3/√10) +2πn ) , n∈Z .
* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * *
P.S. a*cosx+b*sinx = √(a² +b²)cos(x - α) ,где α=arccos(a/b) _формула вспомогательного(дополнительного) угла .