Обозначим пирамиду МАВСД,
АС - большая диагональ, АВ=СД=7, ВС=АВ=3, высота МО=4
Пусть большим ребром будет МС. Тогда его проекция на основание - ОС больше проекции ребра МВ, и . АС - большая диагональ основания пирамиды.
МО⊥АС, АО=ОС, ∆ МОС - прямоугольный.
По т.Пифагора ОС=√(MC²-MO²)=√20=2√5
Отсюда АС=4√5 - это длина большей диагонали.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
АС²+ВД²=2(АВ²+ВС*)
80+ВД²=116
ВД²=36
ВД=6 этодлина меньшей диагонали основания.
Диагонали основания 4√5 и 6 (ед. длины).