Теория - основа для решения задач.
Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис.
Знаете также и то, что
центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон.
В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете.
О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать.
Вот на знании всех этих свойств и построено решение задачи.
Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности.
В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе).
Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника.
Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него.
R=2r= 5*2=10 cм
См. рисунок в качестве иллюстрации.