Геометрический смысл производной в том, что это тангенс угла наклона касательной к графику функции в данной точке.
Касательная это прямая. ЛЮБАЯ прямая задаётся уравнением y=kx+c, где k это "угловой коэффициент", он-же тангенс угла наклона, он-же значение производной в данной точке.
Т.е. имеем уравнение касательной: y=0.6x+c.
Найдём производную функции:
f'(x)=6/(2(x+4)^0.5);
она равна 0.6;
0.6=6/(2(x+4)^0.5);
2(x+4)^0.5=10;
(x+4)^0.5=5;
(x+4)=25;
x=21; (производная бралась в точке x=21);
Найдём значение y в данной точке;
y=6SQRT(21+4);
y=30;
Подставляем в уравнение касательной:
30=0,6*21+с;
c=17.4;
Окончательное уравнение касательной: y=0.6x+17.4;
Подставим y=0;
0=0,6x+17.4;
x=-17.4/0.6;
x=-29.