Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит. Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов
а их радиусы будем считать равными радиусам магнитов. Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую Bz, направленную вдоль оси магнита, и радиальную Br − перпендикулярную ей. Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы IΔl и просуммировать силы Ампера, действующие на каждые такой элемент. Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо − векторная сумма этих сил равна нулю. Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию.