ΔАВС
∠С = 90°
с = 12√2
a = b
d = 13
V-?
Решение
V = S · h
S - площадь основания
h - высота призмы
1) Из прямоугольного ΔАВС по теореме Пифагора найдём катеты.
а² + b² = c²
Если a=b, то:
2а² = с² => а² = с²/2
а²= 12² · √2² : 2 = 144
а = √144 = 12
a=b=12
2)Найдём площадь треугольника, который лежит в основании.
S = 1/2 · a · b
S = 1/2 · 12 · 12 = 72
S = 72
3) Найдём высоту призмы. Боковая грань - это прямоугольник, в котором а - это одна из его сторон
h - вторая сторона
d - диагональ этого прямоугольника
Диагональ и две стороны образуют прямоугольный треугольник, для которого применим теорему Пифагора:
a² + h² = d²
h² = d² - a²
h² = 13² - 12² = 169 - 144 = 25
h = √25 = 5
h = 5
4) V = S · h
V = 72 · 5 = 360
V = 360