Решить, всё ** фото.

0 голосов
18 просмотров

Решить, всё на фото.


image

Алгебра (1.5k баллов) | 18 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
4.  
(2sinx +1) /(2cosx -  √ 3)=0     ⇔ (равносильно  системе )
{ 2sinx +1 =0  ; 2cosx  - √ 3 ≠ 0. ⇔ { sinx = -1/2  ; cosx   ≠ (√3) /2 .
Если  sinx = -1/2 ,  то  cosx = ± √(1-sin²x) = ± √(1-1/4)  = ± (√3)/2 .
cosx =  (√3)/2 исключается , остается   { sinx = -1/2   ; cosx = (- √ 3)/ 2 ⇒
x = π+ π/6 + 2π*n ,  n ∈ Z.

ответ :  π/6 + π*(2n +1) ,  n ∈ Z.  

* * * или иначе  π/6 + π*k ,  k  нечетное число.  * * * 
-------
5.
(2cosx -1) /(2sinx  + √ 3)=0     ⇔ { 2cosx -1 =0  ; 2sinx  + √ 3 ≠ 0. ⇔ 
{ cosx =1/2  ; sinx   ≠ -(√3) /2 .
Если  cosx =1/2 ,  то  sinx = ± √(1-cos²x) = ± √(1-1/4)  = ± (√3)/2 .
sinx = - (√3)/2 исключается ,остается   { cosx =1/2   ; sinx = (√ 3)/ 2 ⇒
x = π/3 + 2π*n ,  n ∈ Z.

ответ :  π/3 + 2π*n ,  n ∈ Z. 
-------
6.
cos3x /(cos2x+1) = 0  ⇔{cos3x/2cos²x=0.⇔ { cos3x =0  ; cosx ≠ 0. ⇔
{ 3x =π/2 + π*n ,  x ≠ π/2 + πk,  n , k  ∈ Z.  
{ x =π/6 + (π/3)*n ,  x ≠  π/2 + πk,  n , k  ∈ Z

ответ :  (π/6)*(1+2n) ,  n ≠ 3k +1           , n ,k ∈ Z
* * * * * * * * * * * * * * * * * * * * * * * * * * * * 
P.S.  π/6 + (π/3)*n = π/2 + πk,
1 +2n =3 +6k ;
n =3k +1

Удачи !
(181k баллов)
0 голосов

4.
(2*sinX + 1)/(2cosX - √3)
РЕШЕНИЕ  X∈(2πk - 5π/6  ;2πk - π/6)
5.
(2*cosX-1)/(2*sinX+√3)
РЕШЕНИЕ X∈(2πk - 2π/3;  2πk - π/3;  2πk + π/3)
6.
cos(3x)/(cos(2x)+1) = 0
РЕШЕНИЕ  x∈(2πk/3 - π/6; 2πk + π/6)

(500k баллов)
0

РЕШЕНИЕ X∈(2πk - 5π/6 ;2πk - π/6) понимать как { 2πk - 5π/6 ;2πk - π/6