Помогите пожалуесто решить мне показательные уравнения

0 голосов
60 просмотров

Помогите пожалуесто решить мне показательные уравнения


image

Математика (119 баллов) | 60 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1. 4^x+3^(x-1)=4^(x-1)+3^(x+2)
4^x-4^(x-1)=3^(x+2)-3^(x-1)
4^x-4^x/4=9*3^x-3^x/3
4^x*(1-1/4)=3^x*(9-1/3)
4^x*(3/4)=3^x*(26/3)
(4^x)/(3^x)=(26/3)/(3/4) так как степени в дроби одинаковы, то
(4/3)^x=(26*4)/(3*3)
(4/3)^x=104/9
x=loq4/3(104/9)
2. 25^x+5^(x+1)-6=0
5^2*x+5*5^x-6=0
Пусть 5^x=y
y^2+5*y-6=0
y1,2=(-5±√(5^2+4*6))/2=(-5±7)/2
y1=(-5-7)/2=-6 не подходит так как 5^x>0
y2=(-5+7)/2=1    5^x=1   5^x=5^0   x=0

(16.0k баллов)
0

это в какую степень надо возвести 4/3, чтоб получить 104/9? скорее всего ошибка в условии

0

В сепень логарифма, например 2^x=5 х=loq2(5)

0

Логарифмы проходили?

0

проходили

0

Вспомни основную формулу: a^x=b x=loqa(b)

0

у меня вопрос не к Вашему решению, а к условию) Как у Вас получился логарифм, я понимаю, у свех решающих так получилось. Просто логически какой должна быть степень, чтоб из 4/3 получить 104/9

0

на калькуляторе 3,35022

0

У тебя есть инженерный калькулятор с функцией логарифм? Вот он так посчитал.

0

не додумалась! в экселе посчитала) спасибо

0 голосов

1) 4ˣ - 4ˣ⁻¹ = 3ˣ⁺² - 3ˣ⁻¹
     4ˣ⁻¹(4 - 1) = 3ˣ⁻¹(3³ -1)
     4ˣ⁻¹ *3 = 3ˣ⁻¹ * 26 | : (3ˣ⁻¹ * 3)
     (4/3)ˣ⁻¹ = 26/3
2) Учтём, что 25 = 5²  и  5ˣ⁺¹ = 5ˣ *5¹
Введём новую переменную: 5ˣ = t
t² +5t -6 = 0
По т. Виета корни - 6  и  1
а)5ˣ = -6        б) 5ˣ = 1
     ∅                     х = 0 

(46.2k баллов)
0

в 1-м примере не дорешал, что-то с условием не так...

0

вот и я думаю, ошибка там в условии