Помогите пожалуйста, только под Б) с 1ого по 4ое

0 голосов
23 просмотров

Помогите пожалуйста, только под Б) с 1ого по 4ое


image

Математика (17 баллов) | 23 просмотров
Дан 1 ответ
0 голосов

Находим производную функции, приравниваем её к нулю, находим точки экстремума. Получаем интервалы монотонности функции. Подставляем любое удобное значение х из исследуемого интервала в формулу производной функции. Определяем знак производной на  данном интервале. Если + то функция возрастает, если - , то убывает.
1. y=4*x^2+6*x  
y'=(4*x^2+6*x)'=8*x+6=0  8*x=-6  x=-3/4=-0,75 - точка экстремума.
интервалы монотонности функции (-бесконеч.;  -0,75)+(-0,75; +бесконеч.)
y'(-1)=8*(-1)+6=-2<0 функция убывает на интервале (-бесконеч.;  -0,75)<br>y'(0)=8*0+6=6>0 функция возрастает на интервале(-0,75; +бесконеч.)
2. у=x^2/2-3*х
y'=(x^2/2-3*x)'=x-3=0  x=3 - точка экстремума.
интервалы монотонности функции (-бесконеч.; 3)+(3; +бесконеч.)
у'(0)=0-3=-3<0 функция убывает на интервале (-бесконеч.; 3)<br>у'(4)=4-3=1<0 функция возрастает на интервале (3; +бесконеч.)<br>3. у=x^2-4*x
y'=(x^2-4*x)'=2*x-4=0  2*x=4 x=2 -  точка экстремума.
интервалы монотонности функции (-бесконеч.; 2)+(2; +бесконеч.)
у'(0)=2*0-4=-4<0 функция убывает на промежутке(-бесконеч.; 2)<br>у'(4)=2*4-4=4>0 функция возрастает на промежутке (2; +бесконеч.)
4. у=x^2-x
y'(x^2-x)=2*x-1=0 2*x=1  x=0,5 точка экстремума.
интервалы монотонности функции (-бесконеч.; 0,5)+(0,5; +бесконеч.)
у'(0)=2*0-1<0 функция убывает на интервале (-бесконеч.; 0,5)<br>у'(2)=2*2-1=3>0 функция возрастает на промежутке (0,5; +бесконеч.)

(16.0k баллов)