РАВНОСТОРОННИЙ КОНУС — прямой круговой конус, образующая которого равна диаметру основания.
Отсюда радиус R основания равен 20/2 = 10 дм.
Так как площадь сечения, проведённого через вершину конуса, отсекает в основании дугу в 60 градусов, то линия сечения основания и 2 радиуса образуют равносторонний треугольник со сторонами по 10 дм.
В сечении имеем равнобедренный треугольник с боковыми сторонами по 20 дм, в основании - 10 дм.
Высота h этого треугольника равна:
h = √(L² - (a/2)²) = √(400 - 25) = √375 = 5√15 дм.
Площадь S сечения равна:
S = (1/2)ah = (1/2)*10*5√15 = 25√15 дм².