Имеем дифференциальное уравнение x * y' = 2y + 1
Перепишем через дифференциалы:
x * (dy/dx) = 2y + 1;
Обе части сначала разделим на x, а затем на (2y+1)
(dy/dx) / (2y + 1) = 1/x;
Наконец, можем умножить обе части на dx, получим дифур с разделяющимися переменными:
dy/(2y + 1) = dx/x
Интегрируем левую и правую части:
∫dy/(2y+1) = ∫dx/x, получаем (1/2) * ln(2y+1) = ln(x) + C
Выражаем игрек через икс:
ln(2y+1) = 2 ln(x) + 2C = 2 ln(x) + 2C*ln(e) = ln[(x^2) * e^(2C)]
2y+1 = (x^2) * e^(2C)
y = (1/2) * ( (x^2) * e^(2C) - 1) =((e^(2C))/2) * x^2 - 1/2
Произвольный коэффициент (e^(2C))/2 можно обозначит любым символом, но пусть это будет тот же самый (для простоты), тогда
y = C * x^2 - 1/2