Lim[x->+oo] x - √(x²-4x) =
lim[x->+oo] (x - √(x²-4x))(x + √(x²-4x))/(x + √(x²-4x)) =
lim[x->+oo] (x² - x²-4x)/(x + √(x²-4x)) =
lim[x->+oo] (-4x)/(x + √(x²-4x)) =
lim[x->+oo] (-4x)/(x(1 + √(1-4/x))) =
lim[x->+oo] (-4)/(1 + √(1-4/x)) =
-4/(1 + √(1-4/oo)) = -4/(1+√(1-0)) = -4/(1+1) = -4/2= -2
lim[x->-oo] x - √(x²-4x) = -оо -√((-оо)²+оо) = -оо -√(+оо+оо) = -оо -√+оо = -оо -оо = -оо