В основании прямоугольного параллелепипеда abcda1b1c1d1 лежит квадрат abcd со стороной а....

0 голосов
272 просмотров

В основании прямоугольного параллелепипеда abcda1b1c1d1 лежит квадрат abcd со стороной а. боковое ребро параллелепипеда равно b. Точка K принадлежит A1B1 и A1K:KB1=2:1. Через середины ребер AD и CD и точку К проведено сечение. Найти S сечения


Геометрия (412 баллов) | 272 просмотров
0

могу предложить числа для удобства решения

Дан 1 ответ
0 голосов
Правильный ответ

Для удобства расчёта примем сторону квадрата, равной 4, а высоту - 6.
Задачу можно решить или геометрическим способом, или координатным.
Для этого определяем координаты точек пересечения заданной секущей плоскости с рёбрами параллелепипеда.
Точка К делит ребро А1В1 так: А1К = (2/3)*4 = 8/3, КВ1 = 4/3.
Тогда длина отрезка  КМ = (4/3)*√2 = 4√2/3 (это след пересечения верхней грани секущей плоскостью).
В нижней грани отрезок ТР делит рёбра пополам и равен 2√2.
Точки О и Е на боковых рёбрах находим из вспомогательного построения.
Отрезок ТР продлеваем до пересечения с рёбрами АВ и ВС. Из точек К и М проводим прямые в эти точки, которые пересекают рёбра АА1 и СС1 в точках О и Е.
Детали приведены в приложениях.

(309k баллов)