Помогите, пожалуйста. сos^2x+cos^2(2x)+cos^2(3x)+cos^2(4x)=7/4

0 голосов
22 просмотров

Помогите, пожалуйста.
сos^2x+cos^2(2x)+cos^2(3x)+cos^2(4x)=7/4


Алгебра (93 баллов) | 22 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

По формуле синуса двойного угла
7/4*cos(x/4) = cos^3(x/4) + 2sin(x/4)*cos(x/4)
cos^3(x/4) + cos(x/4)*(2sin(x/4) - 7/4) = 0
cos(x/4)*(cos^2(x/4) + 2sin(x/4) - 7/4) = 0
1) cos(x/4) = 0; x/4 = pi/2 + pi*k; x1 = 2pi + 4pi*k
2) 1 - sin^2(x/4) + 2sin(x/4) - 7/4 = 0
Умножаем все на -1 и делаем замену sin(x/4) = y
y^2 - 2y + 7/4 - 1 = 0
y^2 - 2y + 3/4 = 0
D/4 = 1 - 3/4 = 1/4 = (1/2)^2
y1 = sin(x/4) = 1 - 1/2 = 1/2; x/4 = (-1)^n*pi/6 + pi*n; x2 = (-1)^n*2pi/3 + 4pi*n
y2 = sin(x/4) = 1 + 1/2 = 3/2 - решений нет, потому что sin x <= 1<br>Ответ:  x1 = 2pi + 4pi*k;   x2 = (-1)^n*2pi/3 + 4pi*n

(60 баллов)
0

cos x)^2+(cos 2x)^2+(cos 3x)^2+(cos 4x)^2=2
(1+cos 2x)/2+(1+cos 4x)/2+(1+cos 6x)/2+(1+cos 8x)/2=2
1+cos 2x+1+cos 4x+1+cos 6 x+1+cos 8x=4
cos 2x+cos 4x+cos 6 x+cos 8x=0
(cos 2x+cos 8x)+(cos 4x+cos 6 x)=0
2*cos 5x*cos 3x+2*cos 5x*cos x =0
cos 5x*(cos 3x+cos x)=0
2*cos 5x*cos 2x*cos x=0
1) cos x=0 =>x= pi/2+pi*k
2) cos 2x=0 => 2x=pi/2+pi*m => x=pi/4+pi*m/2
3) cos 5x=0 => 5x=pi/2+pi*n => x=pi/10+pi*n/5
x=pi/4+pi*m/2 и x=pi/10+pi*n/5