У меня есть свой вариант построения.
Простроим произвольную окружность (удобно подходящую, конечно).
Отложим хорду АВ, равную сумме отрезков a и b. AE=a, BE=b.
Из точки Е отложим окружность с радиусом, равным отрезку с.
Точка пересечения окружностей даёт нам отрезок СЕ, равный с. СЕ=с.
Отложим луч СЕ, пересекающий первую окружность в точке Д.
Фокус в том, что по теореме о пересекающихся хордах АЕ·ВЕ=СЕ·ДЕ или ДЕ=АЕ·ВЕ/СЕ=ab/c, значит ДЕ=d.
Таким способом можно получить сразу два отрезка d. На рисунке это отрезки ДЕ и Д`E