В группе 32 студента. Каждый из них пишет или одну, или две контрольные работы, за каждую...

0 голосов
86 просмотров

В группе 32 студента. Каждый из них пишет или одну, или две контрольные работы, за каждую из которых можно получить от 0 до 20 баллов включительно. Причем каждая из двух контрольных работ по отдельности дает в среднем 14 баллов. Далее, каждый из студентов назвал свой наивысший балл (если писал одну работу, то называл за нее), из этих баллов находили среднее арифметическое и оно равно S.
Вопросы: а) Приведите пример, когда
S<14. Б) Могло ли быть такое, что 28 человек пишет две контрольные и S=11? В) Какое максимальное число студентов могло написать две контрольные работы, если S=11? <br>


Математика (465 баллов) | 86 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А) Например, если 28 студентов написали обе контрольные и получили за них 15 баллов и по 2 студентов писали только первую и только вторую работу и получили за них 0 баллов, то средний балл по каждой работе 28 * 15 / 30 = 14, а средний максимальный балл равен 28 * 15 / 32 = 13 1/8 < 14.

б) Нет. Если 28 человек писали обе работы, значит, четверо написали по одной работе и всего написано 2 * 28 + 4 = 60 работ. Поскольку средний баллпо каждой работе равен 14, то средний балл по всем работам тоже равен 14, и всего студенты набрали 14 * 60 = 840 баллов. При этом сумма максимальных баллов равна 11 * 32 = 352 балла. Но если сумма максимальных баллов равна 352, то все оставшиеся оценки в сумме не могут дать больше, чем 352 балла, и всего баллов не более 2 * 352 = 704.

в) Пусть обе контрольные работы написало N студентов. Повторяем рассуждение из предыдущего пункта: всего написано 2N + (32 - N) = N + 32 работ, сумма всех баллов 14 * (N + 32), сумма максимальных баллов 352. 2 * 352 >= 14 * (N + 32), N <= 128/7. Учитывая, что  N - целое число, N <= 18.<br>
N = 18 достигается, например, если 16 человек написали обе работы на 20, 1 человек написал первую на 19, вторую на18; 1 человек написал первую на 10, вторую на 11; 1 человек написал первую на 1, 6 человек написали первую на 0, 1 человек написал вторую на 1, 6 человек написали вторую на 0.

Первую работу писали 18 + 7 = 25 человек, сумма баллов 16 * 20 + 19 + 10 + 1 = 350, средний балл 350 / 25 = 14.
Вторую работу писали 25 человек, сумма баллов 16 * 20 + 18 + 11 + 1 = 350, средний балл 14.
Сумма максимальных баллов 16 * 20 + 19 + 11 + 2 * 1 = 352, средний максимальный балл 352 / 32 = 11.

(148k баллов)
0

Пункт А

0

Разве из условия не сказано, что студент пишет или одну работу, или 2?