Мы знаем, что функция y = sinx принимает положительные значения на промежутке (0; π) и отрицательные на (π; 2π).
Также график функции y = sinx возрастает на [0; π/2], убывает на [π/2; π]
Мы знаем, что π ≈ 3,14
π/2 ≈ 3,14:2 = 1,57
sin0 = 0
sin4 ≈ sin(π + 0,86) = -sin0,86
0,86 < π/2 ⇒ sin0,86 > 0 ⇒ -sin0,86 < 0
sin(7/3) ≈ sin(2,3)
Нужно сравнить числа sin(2) и sin(2,3)
Т.к. на промежутке [π/2; π] синус убывает, то sin(2) > sin(2,3) (оба данных числа заключены в данном промежутке).
Значит, sin4 < 0
sin0 = 0
sin(2) > sin(2,3).
Ответ: sin4; sin0; sin(7/3); sin2.