5Cos²x - 3Cosx -2 = 0
D = 9 + 40 = 49
a) Cosx = 1 б) Cosx = -0,4
x=2πk , k ∈Z x = +-arcCos(-0,2) + 2πn , n ∈Z
2) Sin²x - 6Sinx = 0
Sinx(Sinx - 6) = 0
Sinx = 0 или Sinx -6 = 0
x = πn , n ∈Z Sinx = 6
∅
3) 3Sinx -2Cos²x = 0
3Sinx -2(1 - Sin²x) = 0
3Sinx -2 + 2Sin²x = 0
2Sin²x + 3Sinx -2 = 0
D = 9 + 16 = 25
a) Sinx = 1/2 б) Sinx = -2
x = (-1)ⁿ π/6 + πn , n ∈Z ∅
4) Sin4xCos2x - Sin2xCos4x = 0
Sin2x = 0
2x = πn , n ∈Z
x = πn/2 , n ∈Z
5) Sin²x + 2SinxCosx + Cos²x = 1 + SinxCosx
SinxCosx = 0
Sinx = 0 или Cosx = 0
x = nπ, n ∈Z x = π/2 + πk , k ∈Z