Треугольник АВС задан координатами своих вершин: А (3; 4), В (–9; –2), С (–5; –7)....

0 голосов
26 просмотров

Треугольник АВС задан координатами своих вершин: А (3; 4), В (–9; –2),
С (–5; –7). Написать уравнение: стороны АВ; высоты СН; прямой СС1, параллельной прямой АВ.

Даю много баллов, реальный напряг


Математика (186 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)Уравнение стороны АВ
Уравнение прямой проходящей через точки А(ха, уа) и В (хв, ув) в общем виде:
(x-xa)/(xb-xa)=(y-ya)/(yb-ya)
Подставим координаты А (3;4) и  В (-9;-2) в уравнение прямой :
(x-3)/(--3)=(y-4)/(-2-4)
(х-3)/(-12)=(у-4)/(-6)
(x-3)/2=y-4
x-3=2y-8
x-2y+5=0 -уравнение прямой AB
или
у=1/2*х+5/2 Здесь угловой коэффициент прямой равен 1/2

2)Уравнение высоты CH, опущенной из вершины С на сторону АВ
Высота СH перпендикулярна стороне АВ.По условию перпендикулярности 2-х прямых:
kСH= -1/kAB=-2
Составим уравнение высоты СH по известной точке и угловому коэффициенту:
у-ус=k(x-xc)
y+7=-2(x+5)
y+7=-2x-10
2x+y+17=0 --уравнение высоты СH

3)CC1||AB значит коэффициент одинаковый
y=1/2x+b и проходит через точку С(-5;-7)
-7=1/2*(-5)+иb
b=-7+2,5
b=-4,5
y=0,5x-4,5 уравнение прямой СС1

(750k баллов)