Loq3(3*x^2)*loq3(x)=1
(loq3(3)+loq3(x^2))*loq3(x)=1
(1+2*loq3(x))*loq3(x)-1=0 Пусть loq3(x)=t, тогда
(1+2*t)*t-1=0
t+2*t^2-1=0
2*t^2+t-1=0 t1,2=(-1±√(1+4*2))/2*2=(-1±3)/4
t1=(-1-3)/4=-1 loq3(x)=-1 loq3(x)=loq3(3^(-1) x=3^(-1)=1/3
t2=(-1+3)/4=2/4=1/2 loq3(x)=1/2 loq3(x)=loq3(3^(1/2)=loq3(√3) x=√3