а) Пусть окружность касается оснований BC и AD в точках K и L соответственно, а ее центр находится в точке O.
Лучи AO и BO являются биссектрисами углов BAD и ABC соответственно, поэтому
Значит треугольник AOB прямоугольный. Аналогично, треугольник COD тоже прямоугольный. Пусть BM = x, CN = y, тогда AM = 8x, DN = 2y
MO=√AM*MB=2√2x=NO=√CN*ND=3y
Отсюда у=2х
Следовательно
BK=BM=x
AL=AM=8x
CK=CN=2x
DL=DN=4x
BC=BK+KC=3x
AD=AL-LD=12x
ОтсюдаAD=4BC