Решите неравенство!!

0 голосов
10 просмотров

Решите неравенство!!


image

Математика (316 баллов) | 10 просмотров
Дан 1 ответ
0 голосов

√(x+4)<√(x²-2x+4) - возведем неравенство во вторую степень<br>x+4x²-2x+4>x+4
x²-3x>0
х(х-3)>0
это неравенство расписывается на две группы неравенств
первая группа неравенств
х>0 -> хє(0;+оо)
х-3>0 -> х>3 -> хє(3;+оо)
общая область - пересечение найденных областей -> хє(3;+оо)

вторая группа неравенств
х<0 -> хє(-оо;0)
х-3<0 -> х<3 -> хє(-оо;3)
общая область - пересечение найденных областей -> хє(-оо;0)

область, удовлетворяющая неравенству х(х-3)>0 - обьединение областей, найденных при решении двух групп неравенств -> хє(-оо;0)U(3;+оо)

ОДЗ функции √(x+4)
x+4≥0 -> x≥-4 -> xє[-4;+oo)


ОДЗ функции √(x²-2x+4)
(x²-2x+4)≥0
решим уравнение
(x²-2x+4)=0
дискриминант
D=(-2)² - 4*1*(-4) = 4+16=20
√D=√20=√(4*5)=2√5
первое неизвестное
x=(-(-2)+2√5)/(2*1)=(2+2√5)/2= 1+√5
второе неизвестное
x=(-(-2)-2√5)/(2*1)=(2-2√5)/2= 1-√5

(x²-2x+4)≥0 -> (х-(1+√5))(х-(1-√5))≥0
это неравенство расписывается на две группы неравенств
первая группа неравенств
х-(1+√5)≥0 -> х≥1+√5 -> хє[1+√5;+оо)
х-(1-√5)≥0 -> х≥1-√5 -> хє[1-√5;+оо)
общая область - пересечение найденных областей -> хє[1+√5;+оо)
вторая группа неравенств
х-(1+√5)≤0 -> х≤1+√5 -> хє(-оо;1+√5]
х-(1-√5)≤0 -> х≤1-√5 -> хє(-оо;1-√5]
общая область - пересечение найденных областей -> хє(-оо;1-√5]

область, удовлетворяющая неравенству (x²-2x+4)≥0 - обьединение областей, найденных при решении двух групп неравенств -> хє(-оо;1-√5]U[1+√5;+оо)

область, удовлетворяющая неравенству
√(x+4)<√(x²-2x+4) - пересечение области, удовлетворяющей неравенству х(х-3)>0 и ОДЗ функций, составляющих начальное неравенство √(x+4)<√(x²-2x+4)<br>Выпишем области, которые нужно пересечь
хє(-оо;0)U(3;+оо)
xє[-4;+oo)
хє(-оо;1-√5]U[1+√5;+оо)

1-√5 ≈ 1-2,4=-1,4
1+√5 ≈ 1+2,4=3,4

Пересечением областей будет следующая область
хє[-4;1-√5]U[1+√5;+оо) - область, удовлетворяющая начальному неравенству

(2.2k баллов)