При каких значениях параметра a: Имеет два корня
ax²
-(1-a)x-3=0
Решение:
Квадратное уравнение ax²+bx+c=0 имеет два корня x1 и x2 если а≠0 и его дискриминант D = b²-4ac
больше нуля или D>0
Найдем дискриминант
D =(1-a)² -4*a*(-3) =1-2a+a² +12a =a²+10a+1
Решим неравенство
D > 0
a² + 10a + 1 >0
Разложим левую часть неравенства на множители решив квадратное уравнение
a² + 10a + 1 = 0
D =10² - 4 =100-4 =96
Поэтому можно записать
a² + 10a + 1 =(a+5+2√6)(a+5-2√6)
Перепишем наше неравенство и решим методом интервалов
(a+5+2√6)(a+5-2√6) >0
На числовой прямой отобразим нули квадратного уравнения и определим по методу подстановки (например при а=0 a² + 10a + 1=1>0)
знаки левой части неравенства
+ 0 - 0 +
-------------!---------------!-----------
-5-2√6 -5+2√6
Поэтому неравенство a² + 10a + 1>0 при a∈(-∞;-5-2√6)U(-5+2√6;+∞)
Следовательно исходное квадратное уравнение ax²-(1-a)x-3=0 имеет два корня если a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)
Ответ:a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)