Один з коренів рівняння х² + 4x + q = 0 дорівнює -6. Знайдіть q і інший корінь рівняння.

0 голосов
119 просмотров

Один з коренів рівняння х² + 4x + q = 0 дорівнює -6. Знайдіть q і інший корінь рівняння.


Математика (31 баллов) | 119 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Используем теорему Виета для приведенного квадратного уравнения:
\left \{ {{x_1}+x_{2}=-b} \atop {x_{1}*x_{2}=q}} \right.
\left \{ {{x_1}+x_{2}=-4} \atop {x_{1}*x_{2}=q}} \right.
\left \{ {{x_1}-6=-4} \atop {x_{1}*(-6)=q}} \right.
\left \{ {{x_1}=2} \atop {x_{1}*(-6)=q}} \right.
\left \{ {{x_1}=2} \atop {q=2*(-6)}} \right.
\left \{ {{x_1}=2} \atop {q=-12}} \right.

(15.5k баллов)
0

ужасная фотка!!!!!!!!!!!!

0

рассмашили

0

0

я когда увидел, даже ужаснулся!!!!!!!!!!!

0

лучше смени фотку

0

а то мне в страшных снах снится будешь

0

бу!

0

ой боюся

0 голосов

По теореме Виета
х1 + х2= -4
-6 +х2= -4
х2= 2

х1×х2=q
q=x1×х2= -6×2= -12
Ответ: -12;2

(3.9k баллов)