Помогите, пожалуйста

0 голосов
15 просмотров

Помогите, пожалуйста


image

Алгебра (2.6k баллов) | 15 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

X+(π/3)=t
2cost+4sint=5/2  или  4сost+8sint=5
acosx+bsinx=c
формулы двойного угла
4·(cos2(t/2)–sin2(t/2))+8·2sin(t/2)·cos(t/2) = 5·(cos2(t/2)+sin2(t/2))
cos2(t/2)–16sin(t/2)·cos(t/2)+9sin2(t/2)=0
однородное тригонометрическое уравнение второй степени.
делим на cos2(t/2)
9tg2(t/2)–16tg(t/2)+1=0
D=(–16)2–4·9=256–36=220
tg(t/2)=(16–√220)/18 или tg(t/2)=(16+√220)/18
t/2=arctg((8–√55)/9)+πk или t/2=arctg((8+√55)/9)+πn, k и n – целые.

x+(π/3)=2arctg((8–√55)/9)+2πk ⇒
х=2arctg((8–√55)/9)– (π/3)+2πk, k ∈ Z
или
x+(π/3)=2arctg((8+√55)/9)+2πn ⇒
х=2arctg((8+√55)/9)– (π/3)+2πn, n ∈ Z

О т в е т. 2arctg((8–√55)/9)– (π/3)+2πk
или
=2arctg((8+√55)/9)– (π/3)+2πn, k, n ∈ Z

(981 баллов)