В правильной треугольной пирамиде боковое ребро образует с плоскостью основания угол 60...

0 голосов
321 просмотров

В правильной треугольной пирамиде боковое ребро образует с плоскостью основания угол 60 градусов. Сторона основания пирамиды равна 8 см. Найдите площадь боковой поверхности пирамиды. Можно подробное решение?


Геометрия (179 баллов) | 321 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Находим высоту h треугольника основания пирамиды:
h = a*cos30° = 8*(√3/2) = 4√3 см.
Проекция бокового ребра на основание равна (2/3)h = (2/3)*4√3 = 8√3/3 см.
Находим высоту Н пирамиды:
H = (2/3)h*tg60° = (8√3/3)*√3 = 8 см.
Апофема А равна:
А = 
√(Н²+((1/3)h)²) = √(8²+(4√3/3)²) = √(64+(48/9)) = √(624/9) = 4√39/3 см.
Теперь находим площадь Sбок боковой поверхности пирамиды:
Sбок = (1/2)РА = (1/2)*(8*3)*(4√39/3) = 16√39 см².

(309k баллов)