Решите.................

0 голосов
61 просмотров

Решите.................


image

Алгебра (215 баллов) | 61 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

1)\\ \\
3*(( \frac{1}{6} )^{2+log_{ \frac{1}{6}}20}- \sqrt{2}^{4+log_{ \sqrt{2}} \frac{1}{9}})=\\ \\
3*(( \frac{1}{6} )^{log_{ \frac{1}{6} } \frac{1}{36} +log_{ \frac{1}{6}}20}- \sqrt{2}^{log_{ \sqrt{2} }4+log_{ \sqrt{2}} \frac{1}{9}}) = \\ \\
3*(( \frac{1}{6} )^{log_{ \frac{1}{6}} \frac{20}{36} }- \sqrt{2}^{log_{ \sqrt{2}} \frac{4}{9}}) = \\ \\
3*( \frac{20}{36} - \frac{4}{9}) = 3*( \frac{20}{36} - \frac{16}{36}) = \\ \\
= 3*\frac{4}{36} = 3*\frac{1}{9} = \frac{1}{3}
2)\\\\
25^{log_{5}3 - log_{125}2}-3^{-log_{3}8} = \\\\
= 25^{2log_{25}3-\frac{1}{2}log_{25}2} - \frac{1}{3^{log_{3}8}} = \\\\
= 5^{4log_{25}3-log_{25}2} - \frac{1}{3^{3log_{3}2}} = \\\\
= 5^{log_{25}3^{4}-log_{25}2} - \frac{1}{8}} = \\\\
= 5^{log_{25}\frac{3^{4}}{2}} - \frac{1}{8}} = \\\\
= 5^{\frac{1}{2}log_{5}\frac{3^{4}}{2}} - \frac{1}{8}} = \\\\
= \sqrt{\frac{3^{4}}{2}} - \frac{1}{8} = \\\\
= \frac{9}{\sqrt{2}} - \frac{1}{8} = \\\\
= \frac{9\sqrt{2}}{2} - \frac{1}{8} = \frac{36\sqrt{2}}{8}-\frac{1}{8} = \frac{36\sqrt{2}-1}{8}
(3.4k баллов)