Многочлен из левой части уравнения должен представляться в виде (x - u)^2 (x - v)^2.
Раскрываем скобки:
x^4 - 2(u + v) x^3 + (u^2 + 4uv + v^2) x^2 - 2uv(u + v) x + u^2 v^2
Приравниваем коэффициенты при одинаковых степенях.
x^3: -2(u + v) = -10; u + v = 5
x^2: u^2 + 4uv + v^2 = 37
(u + v)^2 + 2uv = 37
25 + 2uv = 37
2uv = 12
Коэффициент при x равен p, с другой стороны, он равен -2uv(u + v) = -12 * 5 = -60.
В конце хорошо бы убедиться, что уравнениям соответствуют действительные значения u и v. В данном случае это так, u, v - это 2 и 3 (в каком-то порядке).
Ответ. -60.