1)Найдите такое число ab и такой натуральный k, чтобы aab+ab=k² 2)Найдите такое...

0 голосов
20 просмотров

1)Найдите такое число ab и такой натуральный k, чтобы aab+ab=k²
2)Найдите такое натуральное число abcde, для которого 83*abcde=3abcde8


Алгебра (376 баллов) | 20 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1)
 100а+10a+b+10a+b=k*k
120a+2b=k*k
Очевидно, k -четное и все делится на 4. Значит b  четное. Пусть оно 2х, а к=2у.  х меньше 5.
30а+х=у*у
а=1 х=6 не подходит
а=2 х=4 подходит
а=4 х=1
Дальше таких чисел нет.
Ответ:28 или 42
Действительно: 228+28=16*16   и 442+42=22*22
2)
83*х=300000+х*10+8
73х=3000008
х=3000008:73
х=41096
Ответ:41096

(62.2k баллов)
0

Спасибо :)

0 голосов

1) aab + ab = k²
Позиционная десятичная система. Число aab < 1000, даже если к нему прибавить число ab < 100, то aab + ab < 1100. Значит, можно попробовать метод подбора, проверить все квадраты меньше 1100.
Распишем исходное уравнение:
100a + 10a + b + 10a + b = 120a + 2b = 2 * (60a + b)
Отсюда следует, что проверить надо лишь чётные квадраты. Выпишем их: 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900 и 1024.
При подборе учтём, что  ab + ab < 100, иначе будет перенос в следующий разряд, и число сотен (равное а) увеличится на 1.
Проверка показывает, что подходят два числа: 256 и 484.
В первом случае aab = 228 и ab = 28; aab + ab = 228 + 28 = 256 = 16²
Во втором - aab = 442 и ab = 42; aab + ab = 442 + 42 = 484 = 22²
Ответ: ab = 28 и ab = 42

2) 83 * abcde = 3abcde8
Перепишем согласно позиционной десятичной системе:
83 * (a*10^4 + b*10^3 + c*10^2 + d*10 + e) =
= 3*10^6 + a*10^5 + b*10^4 + c*10^3 + d*10^2 + e*10 + 8
Раскроем скобки:
830000a + 83000b + 8300c + 830d + 83e =
= 3000000 + 100000a + 10000b + 1000c + 100d + 10e +8
Приведём подобные:
730000a + 73000b + 7300c + 730d + 73e = 3000008
Сократим обе части на 73:
10000a + 1000b + 100c + 10d + e = 41096
Следовательно, abcde = 41096
Проверяем: 83*41096 = 3410968

(43.0k баллов)
0

Спасибо :)

0

в 1) есть ответ 28, а 2) можно попроще!)