Пусть катеты данного треугольника имеют длины a и b, а гипотенуза c. Тогда из того, что площадь этого треугольника равна половине произведения катетов, а также произведению половины периметра на радиус вписанной окружности, а сам периметр равен 12:
Гипотенуза прямоугольного треугольника есть диаметр описанной около этого треугольника окружности (является хордой, на которую опирается вписанный угол величиной 90°)
Значит радиус описанной около прямоугольного треугольника окружности равен половине длины гипотенузы данного треугольника:
Ответ: R=2.5