Высота проведенная из вершины тупого угла ромба делит его сторону пополам найдите углы и сторону если диагональ равна 16 см
В ромбе АВСD высота из тупого угла В делит противоположную сторону пополам. Следовательно, эта высота является и медианой. Значит треугольник АВD - равносторонний и сторона равна меньшей диагонали. Углы такого ромба равны: Предположим, что дана большая диагональ. Тогда в прямоугольном треугольнике АВО (один из четырех, на которые делят ромб его диагонали) Это половина меньшей диагонали BD,в диагональ BD=16√3/3≈9,24 см, то есть сторона ромба равна 16√3/3≈9,24 см. Если дана диагональ меньшая, то по Пифагору половина большей диагонали равна √(16²-8²)=8√3, а диагональ CD=16√3. тогда сторона ромба равна его меньшей диагонали =16 см. Ответ: если дана меньшая диагонал, то сторона ромба равна 16см. если дана большая диагональ, то сторона ромба равна ≈9,24 см. Углы ромба равны два по 60° и два по120°.