При каком наименьшем значении a уравнение а2х2 – 2(а+2)х +1=0 имеет решение?
Получается a^2x^2-2ax-4x+1 = 0 a^2x^2-(4+2а)x+1 = 0 Уравнение не имеет решений когда D < 0, а минимальное количество решений (одно) когда D = 0, D= b^2-4ac=16+16а+4а^2-4а^2=16+16а=0 Ответ = -1.
Надеюсь я правильно понял задание, а то сейчас перечитал и чет запутался, но по сути решение правильное, но это не точно, как мне кажется, но других вариантов решения в голову мне и не приходит.
Ответ -1