Свойства функции y=x²

0 голосов
19 просмотров

Свойства функции y=x²


Математика (121 баллов) | 19 просмотров
Дано ответов: 2
0 голосов

График функции y = x2 называется параболой
Свойства функции у = х2
1. Если х = 0, то у = 0, т. е. парабола имеет с осями координат общую точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс
3. Множеством значений функции у = х2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличают­ся только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х2 - четная).
5. На промежутке [0; + ∞) функция у = х2 возрастает
6. На промежутке (-∞; 0] функция у = х2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует

(68 баллов)
0

Спасибо

0

Пожалуйсто

0 голосов


Рассмотрим функцию заданную формулой y = x 2.

На основании определения функции каждому значению аргумента х
из области определения R ( все действительные числа )
соответствует единственное значение функции y , равное x 2.

Например, при х = 3 значение функции y = 3 2 = 9 ,
а при х = –2 значение функции y = (–2) 2 = 4 .

Изобразим график функции y = x 2 . Для этого присвоим
аргументу х несколько значений, вычислим соответствующие значения
функции и внесем их в таблицу.

Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,

то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .

Нанесем точки с вычисленными координатами (x ; y) на плоскость и
соединим их плавной непрерывной кривой. Эта кривая, называющаяся
параболой, и есть график исследуемой нами функции.
(60 баллов)