1/2sin(6x-2x)+1/2sin(6x+2x)<1/2sin(5x-3x)+1/2sin(5x+3x)<br>1/2sin4x+1/2sin8x<1/2sin2x+1/2sin8x<br>1/2sin4x-1/2sin2x<0<br>1/2*2sin2xcos2x-1/2sin2x<0<br>1/2sin2x(2cos2x-1)<0<br>1){sin2x>0⇒2πk<2x<π+2πk⇒πk<x<π/2+πk,k∈z<br>{cos2x<1/2⇒π/3+2πk<2x<5π/3+2πk⇒π/6+πk<x<5π/6+πk,k∈z<br>x∈(π/6+πk;π/2+πk,k)
2){sin2x<0⇒π+2πk<2x<2π+2πk⇒π/2+πk<x<π+πk,k∈z<br>{cos2x>1/2⇒-π/3+2πk<2x<π/3+2πk⇒-π/6+πk<x<π/6+πk,k∈z<br>x∈(-π/6+πk;πk,k∈Z)
Ответ x∈(-π/6+πk;πk,k∈Z) U (π/6+πk;π/2+πk,k)