К решению второй задачи. Здесь я перемудрил. Всё ещё проще (см. рисунок). Так как BC=x+4. AC=24-x, AB=20, то BC+AC+AB=x+4+24-x+20=48. Тогда p=48:2=24, где p - полупериметр треугольника ABC. Известно, что S(ABC)=pr, где r - радиус вписанной в треугольник окружности. В этой задаче r=4. Поэтому S=24*4=96. И вообще, для прямоугольного треугольника можно вывести формулу p=c+r (p - полупериметр, c - гипотенуза, r - радиус вписанной окружности. И тогда S=(c+r)*r.