1)f(x)=2eˇx, x0=0
f(0)=2eˇ0=2.1=2
f´(x)=2eˇx
f´(0)=2.eˇ0=2.1=2=k=tgα
T(0,2),k=2
y-2=2(x-0)
y-2=2x
y=2x+2
2)f(x)=4+5x², x0=1
f(1)=4+5.1²=4+5.1=4+5=9
T(1,9)
f´(x)=5.2x=10x
f´(1)=10.1=10=k
y-9=10(x-1)
y-9=10x-10
y=10x-10+9
y=10x-1
3)f(x)=3cos2x , x0=π/4
f(π/4)=3cos(2π/4)=3cos(π/2)=3.0=0
f´(x)=2.3.(-sin2x)=-6sin2x
f´(π/4)=-6sin(π/2)=-6.1=-6=k
T(π/4, 0),k=-6
y-0=-6(x-π/4)
y=-6x+6π/4
y=-6x+3π/2