Составить уравнение нормали к поверхности параллельной прямой

0 голосов
78 просмотров

Составить уравнение нормали к поверхности
x^2-2x+6y-z^2=4
параллельной прямой \frac{x}{1} = \frac{y-2}{3} = \frac{z-1}{4}


Математика (295 баллов) | 78 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
a=n
n =   grad F(x₀, y₀, z₀) = F'x(x₀, y₀, z₀) i + F'y(x₀, y₀, z₀) j + F'z(x₀, y₀, z₀)k 
grad F=(2x-2)i+6j+(-2z)k
a={2x-2;6;-2z}
a=ma₁=(1;3;4)
\frac{2x-2}{1} = \frac{6}{3} = \frac{-2z}{4} \\
 \frac{2x-2}{1} = 2 \\ 2x-2=2\\
2x=4\\
x=2\\
-\frac{2z}{4}=2\\
-2z=8\\
z=-4
x^2-2x+6y-z^2=4\\
2^2-2*2+6y-(-4)^2=4\\
6y=20\\
y=3 \frac{1}{3}
l_n: \ \frac{x-2}{1} = \frac{y-3 \frac{1}{3} }{3} = \frac{z+4}{4}



(5.1k баллов)
0

Спасибо большое!

0

Пожалуйста