task/25172737
------------------
Решите уравнение sin⁴x +cos⁴x =5/8
-----------------------
Решение
sin⁴x +cos⁴x =5/8 ⇔(sin²x +cos²x)² - 2*(sinxcosx)² =5/8 ⇔
1 -2*( (sin2x)/2 )²= 5/8⇔2*(sin²2x)/4 =1 - 5/8⇔(1/2)*sin²2x= 3/8⇔sin²2x= 3/4 ⇔(1-cos4x) /2 = 3/4 ⇔1-cos4x= 3/2 ⇔ cos4x = -1/2 .
4x =± (π -π/3) +2π*n , n ∈Z ;
x =± π/6 +(π/2)*n , n ∈Z.
ответ : ± π/6 +(π/2)*n , n ∈Z.