1
∛(x-1)/∛(x-1)³=1
1/∛(x-1)²=1
x-1=1
x=2
2
1/x(x²=x-2)+2/x²(x²+x-2)≤0
(x+2)/x²(x²+x-2)≤0
x²+x-2=0
x1+x2=-1 U x1*x2=-2
x1=-2 U x2=1
(x+2)/[x²(x+2)(x-1)]≤0
1/x²(x-1)≤0,x≠-2
1>0⇒x²(x-1)<0<br>x=0 x=1
_ _ +
------------(-2)-----------------(0)------------(1)-------------------
x∈(-∞;-2) U (-2;0) U (0;1)
3
ОДЗ
{x²+1>0 при любом х
{3-x>0⇒x<3<br>x∈(-∞;3)
основания равны,значит
x²+1>3-x
x²+x-2>0
x1+x2=-1 U x1*x2=-2
x1=-2 U x2=1
x<-2 U x>1
\\\\\\\\\\\\\\\\\\\\\\\\ //////////////////////////////////////
------------------(-2)---------------(1)---------------(3)---------
////////////////////////////////////////////////////////////////////////
x∈(-∞;-2) U (1;3)