5^log5(3-4x) < 9 полное решение пожалуйста

0 голосов
33 просмотров

5^log5(3-4x) < 9 полное решение пожалуйста


Алгебра (34 баллов) | 33 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

ОДЗ 3-4x\ \textgreater \ 0    откуда    x\ \textless \ \frac{3}{4}

5^{\log_5(3-4x)}\ \textless \ 9\\ 3-4x\ \textless \ 9\\ -4x\ \textless \ 9-3\\ -4x\ \textless \ 6\\ x\ \textgreater \ - \frac{3}{2}

С учетом ОДЗ: x \in (-\frac{3}{2} ;\frac{3}{4} )


Ответ: x \in (-\frac{3}{2} ;\frac{3}{4} )

0 голосов

A^log(a)b=b
5^log(5)(3-4x)<9<br>{3-4x<9⇒-4x<9-3⇒-4x<6⇒x>-1,5
{3-4x>0⇒-4x>-3⇒x<0,75<br>x∈(-1,5;0,75)

(750k баллов)