Найти производную функции

0 голосов
30 просмотров

Найти производную функции lny+ \frac{x}{y} =0


Математика (91 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

\ln y=- \frac{x}{y} \\ (\ln y)'=(- \frac{x}{y})' \\ \frac{y'}{y} =- \frac{x'y-xy'}{y^2} \\ \frac{y'}{y} =\frac{xy'-y}{y^2}\\ y'=\frac{xy'-y}{y}\\ xy'-yy'=y\\ (x-y)y'=y\\ y'= \frac{y}{x-y}
(25.2k баллов)
0

производная от lny разве не d(y)/y?