Пронумеруем мешков.Получим 1-ый,2-ой,...,10-ый мешок. Берём из 1-го мешка 1 монету, со второго мешка 2 монеты,..., с 10-го мешка 10 монет.Если бы во всех мешках были бы "правильные" монетки, мы бы при взвешивании этих взятых монет , получили бы :
1×10+2×10+3×10+...+10×10=10×(1+2+3+4+...+10)=10×((1+10)/2)×10=10×55=550г.В первом скобке сумма 10 членов арифметической прогрессии, с первым членом 1 и разности 1:1+2+3+4+5+...+10.
Так как у нас есть "неправильные"монетки, при взвешивании мы получим не 550 грам, а от 551г до 560 г включительно.Вот, и здесь мы узнаем, в каком мешке "неправильные"монетки.
Если при взвешивании -551г, значит,1-ый мешок"неправильный",552 г-2-ой мешок,553 г-третий мешок,,,,560 г-десятый мешок неправильный, то есть, монетки 11 граммовые там и находиться.