В правильной четырехугольной пирамиде SABCD точка O - центр основания, S - вершина,...

0 голосов
47 просмотров

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S - вершина, SO=30, SA=34. Найдите длину отрезка AC и угол между боковым ребром и плоскостью основания.


Геометрия (31 баллов) | 47 просмотров
Дан 1 ответ
0 голосов

Пирамида правильная, значит в основании квадрат. SO - высота (O - центр основания), значит SO перпендикулярно AC. Из прямоугольного треугольника ASO:
AO = корень(AS^2 - SO^2) = корень (1156 - 900) = 16
АО - половина AC (в основании квадрат, значит его центр - точка пересечения диагоналей, следовательно - центр AC). AC = 2AO = 32
Угол SAC будет углом между боковым ребром и основанием. 
cosSAC = AO/AS = 32/34 = 16/17
SAC = arccos16/17

(694 баллов)