Какими целыми числами выражаются стороны равнобедренного треугольника, если радиус...

0 голосов
91 просмотров

Какими целыми числами выражаются стороны равнобедренного треугольника, если радиус вписанной окружности равен 3/2 см, а описанной 25/8 см?


Математика (15 баллов) | 91 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Радиусы вписанной в равнобедренный треугольник и описанной около равнобедренного треугольника окружности равны соответственно:

r = \dfrac{b}{2} \sqrt{ \dfrac{2a - b}{2a + b} } \\ \\ R = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } = \dfrac{a^2}{ \sqrt{(2a - b)(2a + b)} },
где a - боковая сторона, b - основание, r - радиус вписанной окружности, R- радиус описанной окружности.

Сделаем замену переменных, чтобы было легче преобразовывать.
Пусть t = 2a - b, \ \ z = 2a + b

2r = b \sqrt{\dfrac{t}{z} } \\ \\ R = \dfrac{a^2}{ \sqrt{tz} } \\ \\ \\ 3 = b \sqrt{\dfrac{t}{z} } \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{tz} }

Разделим первое уравнение на второе:

\dfrac{3}{ \dfrac{25}{8} } = \dfrac{b \sqrt{t} \sqrt{tz} }{ \sqrt{z}a^2 } \\ \\ \\ \dfrac{24}{25} = \dfrac{bt}{a^2}

Сделаем обратную замену:

\dfrac{24}{25} = \dfrac{b(2a - b)}{a^2} \\ \\ 24a^2 = 50ab - 25b^2 \\ \\ 24a^2 - 50ab + 25b^2 = 0 \ \ \ \ \ \ \ \ \ |: b^2 \\ \\ 24 \dfrac{a^2}{b^2} - 50 \dfrac{a}{b} + 25 = 0

Пусть x = \dfrac{a}{b}

24x^2 - 50x + 25 = 0 \\ \\ D = 2500 - 25 \cdot 4 \cdot 24 = 100 = 10^2 \\ \\ x_1 = \dfrac{50 + 10}{24 \cdot 2} = \dfrac{60}{12 \cdot 4} = \dfrac{5}{4} \\ \\ x_2 = \dfrac{50 - 10}{24 \cdot 2} = \dfrac{40}{48} = \dfrac{5}{6}

Значит, боковая сторона относится к основанию как 5:4, либо как 5:6.

Обратная замена:

\dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ a = 1,25b \\ \\ \dfrac{25}{8} = \dfrac{6,25b^2}{ \sqrt{4 \cdot 6,25b^2 - b^2 } } \\ \\ \dfrac{25}{8} = \dfrac{25b^2}{16 \sqrt{25b^2 - b^2} } \\ \\ \\ 1 = \dfrac{b^2}{2 \sqrt{24b^2} } \\ \\ 2 = \dfrac{b^2}{2 \sqrt{6}b } \\ \\ 4 = \dfrac{b}{ \sqrt{6} } \\ \\ b = 4 \sqrt{6} 

Получилось, что основание выражается иррациональным числом. Значит, данное значение не подходит.

Теперь решим второе уравнение:

\dfrac{a}{b} = \dfrac{5}{6} \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ \\  \dfrac{b}{a} = 1,2 \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ b = 1,2a \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - 1,44a^2} } \\ \\ \dfrac{25}{8} = \dfrac{a}{ \sqrt{2,56} } \\ \\ \dfrac{25}{8} = \dfrac{a}{1,6} \\ \\ a = 5 \\ \\ b = 1,2a = 6

Значит, боковая сторона равна 5 см, а основание - 6 см.
Ответ: 5 и 6. 
(145k баллов)