Sin^2(2x)-2sin(2x)*cos(2x)-3cos^2(2x)=0
sin2x*cos2x(sin(2x)/cos(2x)-3cos(2x)/sin(2x)-2)=0
sin2x*cos2x=0
sin2x=0
2x=0+pi*n
x=0+pi*n/2
cos2x=0
2x=pi/2+pi*n
x=pi/4+pi*n/2
sin(2x)/cos(2x)-3cos(2x)/(sin2x)-2=0
tg2x-3ctg2x-2=0
1/ctg2x-3ctg2x-2=0
-3ctg^2(2x)-2ctg(2x)+1=0
ctg(2x)=y
-3y^2-2y+1=0
3y^2+2y-1=0
D=4+12=16
y1=(-2+4)/6=2/6=1/3
y2=-1
ctg2x=1/3
2x=arctg(3)+pi*n
x=atctg(3)/2+pi*n/2
ctg2x=-1
2x=-pi/4+pi*n
x=-pi/8+pi*n/2
но корни pi*n/2; pi/4+pi*n/2; -pi/8+pi*n/2 имеют одинаковый период и при определенных значениях n будут равны, следовательно эти корни можно записать самым меньшим корнем: x=-pi/8+pi*n/2
Ответ: x1=-pi/8+pi*n/2; x2=arctg(3)/2+pi*n/2