Найдите углы равнобелренного треугольника, в котором биссектриса и высота, проведенные из...

0 голосов
29 просмотров

Найдите углы равнобелренного треугольника, в котором биссектриса и высота, проведенные из одной вершины, отличаются по длине в два раза


Геометрия (15 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой, высота и биссектриса, о которых идет речь проведены из вершины при основании.

Высота и биссектриса отличаются в 2 раза. Проведены они к одной стороне, значит высота в 2 раза меньше биссектрисы (перпендикуляр к прямой всегда меньше наклонной)

АН - высота, АМ - биссектриса.
АМ = 2АН, тогда в прямоугольном треугольнике АМН ∠АМН = 30°.

Обозначим ∠МАС = х, тогда ∠ВАС = ∠ВСА = 2х.

Для треугольника МАС угол АМВ - внешний, равен сумме двух внутренних, не смежных с ним.
∠АМВ = ∠МАС + ∠МСА = х + 2х = 3х

1) Пусть ΔАВС остроугольный, тогда ∠АМВ = 180° - 30° = 150°
3x = 150°
x = 50°, но тогда углы при основании равнобедренного треугольника равны по 100°, что невозможно.

2) ΔАВС - тупоугольный. ∠АМВ = 30°
3x = 30°
x = 10°
∠ВАС = ∠ВСА = 20°
∠АВС = 180° - (20° + 20°) = 140°

(80.0k баллов)