Y' = dy/dx
dy/dx = (y+2)/(x-3)
dy/(y+2) = dx/(x-3)
проинтегрируем:
ln(y+2) = ln(x-3) + lnC
ln(y+2) = ln(C*(x-3))
y + 2 = C(x-3)
подставим начальное условие, чтобы найти С
0 + 2 = C(1 - 3)
2 = C* (-2)
C = -1
y + 2 = -1(x-3)
y + 2 = -x + 3
y = -x - 1
Ответ: y = -x - 1