Имеем параболу y=x^2-12-8
Коэффициенты a=1; b=-12; c=-8
Вершина параболы находится в точке x0=-b/(2a). Т.к. коэффициент перед x^2 больше ноля (a=1>0), то ветви параболы направлены вверх, а в вершине будет минимальное значение.
x0=-(-12)/(2*1)=6. При таком значении х значение исходного выражения будет наименьшим. Находим его, подставляя найденное значение х в первоначальное выражение:
y0=6^2-12*6-8=36-72-8=-44. Это наименьшее значение.